α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes

Author:

Zhang Yong,Dong Lei,Yang Xia,Shi Hongyang,Zhang Li

Abstract

Abstract Aims Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Unsaturated fatty acids may offset the lipotoxicity associated with saturated fatty acids. Stearic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the primary rat hepatocytes. Methods Cell viability was investigated using MTT assay, and apoptosis was evaluated with Hoechst 33342 staining. Western blot analysis was used to examine the changes in the expression levels of glucose regulated protein 78 (GRP78), glucose regulated protein 94 (GRP94), and C/EBP homologous protein (CHOP). Caspase-3 activity was evaluated using a Caspase-3 substrate kit. Results We have studied the ability of α-linolenic acid to prevent endoplasmic reticulum stress-mediated apoptosis of rat hepatocytes elicited by stearic acid and thapsigargin. Incubation of primary rat hepatocytes for 16 h with stearic acid produced a significant increase in cell death. Stearic acid also increased levels of three indicators of ER stress -- GRP78, CHOP, and GRP94. α-Linolenic acid distinctly reduced cell death and levels of all three indicators of ER stress brought about by stearic acid. Thapsigargin, which induces ER stress produced similar effects to those obtained using stearic acid; its effects were partly reversed by α-linolenic acid. Conclusion These results suggest that α-linolenic acid prevents ER stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes might become a target to develop new antiapoptotic compounds in nonalcoholic fatty liver disease (NAFLD).

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3