Author:
Ito Asagi,Shirakawa Hitoshi,Takumi Naofumi,Minegishi Yoshihiko,Ohashi Ai,Howlader Zakir H,Ohsaki Yusuke,Sato Toshiro,Goto Tomoko,Komai Michio
Abstract
Abstract
Background
Vitamin K is essential for the posttranslational modification of various Gla proteins. Although it is widespread in several organs, including the testis, the function of vitamin K in these organs is not well characterized. In this study, we investigated the function of vitamin K in the testis and analyzed its role in steroidogenesis.
Methods
Eight-week-old male Wistar rats were fed a diet supplemented with menaquinone-4 (MK-4, 75 mg/kg diet), one of the predominant K2 vitamins present in the testis, for 5 weeks. In vivo testosterone levels of the rats' plasma and testes were measured by enzyme-linked immunosorbent assay, and in vitro testosterone levels of testis-derived tumor cells (I-10 cells) maintained in Ham's F-10 medium with 10% fetal bovine serum were measured following treatment with MK-4 (0 to 100 μM) at several time points. Testosterone and cellular protein levels were analyzed with respect to their effects on steroidogenesis.
Results
Testosterone levels in the plasma and testes of MK-4-fed rats were significantly increased compared to those of control rats, with no obvious differences in plasma luteinizing hormone levels. Secreted testosterone levels from I-10 cells were elevated by MK-4, but not by vitamin K1, in a dose-dependent manner independent of cAMP treatment. Western blot analysis revealed that expression of CYP11A, the rate-limiting enzyme in steroidogenesis, and phosphorylation levels of protein kinase A (PKA) and the cAMP response element-binding protein were all stimulated by the presence of MK-4. Enhancement of testosterone production was inhibited by H89, a specific inhibitor of PKA, but not by warfarin, an inhibitor of γ-glutamylcarboxylation.
Conclusions
MK-4 stimulates testosterone production in rats and testis-derived tumor cells via activation of PKA. MK-4 may be involved in steroidogenesis in the testis, and its supplementation could reverse the downregulation of testosterone production in elders.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism
Reference37 articles.
1. Shuman S, Booth SL: Roles for vitamin K beyond coagulation. Annu Rev Nutr. 2009, 29: 89-110. 10.1146/annurev-nutr-080508-141217
2. Berkner KL: Vitamin K-dependent carboxylation. Vitam Horm. 2008, 78: 131-156.
3. Kimura S, Satoh H, Komai M: The roles of intestinal flora and intestinal function on vitamin K metabolism. J Nutr Sci Vitaminol (Tokyo). 1992, 38 (Suppl): 425-428.
4. Thijssen HH, Drittij-Reijnders MJ: Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. Br J Nutr. 1994, 72: 415-425. 10.1079/BJN19940043
5. Ikai H, Kato M, Kojima K, Furukawa Y, Kimura S, Komai M: Abundant distribution of menquinone-4 (vitamin K2) in various organs of germfree mice and rats. Germfree Life and its Ramifications. Edited by: Hashimoto K, Sakakibara B, Tazume S, Shimizu K. 1996, 447-450. Shizozawa, Japan, XII ISG Publishing Committee.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献