Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway

Author:

Wilsie Larissa C,Gonzales Amanda M,Orlando Robert A

Abstract

Abstract Background Triacylglyerol-rich very low density lipoprotein (VLDL) particles are the primary carriers of fatty acids in the circulation and as such serve as a rich energy source for peripheral tissues. Receptor-mediated uptake of these particles is dependent upon prior association with apolipoprotein E (apoE-VLDL) and is brought about by cell surface heparan sulfate proteoglycans (HSPG) in some cell types and by the low density lipoprotein receptor-related protein (LRP) in others. Although LRP's role in apoE-VLDL uptake has been well studied, the identity of the HSPG family member that mediates apoE-VLDL uptake has not been established. We investigated if syndecan-1 (Syn-1), a transmembrane cell surface HSPG, is able to mediate the internalization of apoE-VLDL and examined the relationship between Syn-1 and LRP toward apoE-VLDL uptake. For this study, we used a human fibroblast cell line (GM00701) that expresses large amounts of LRP, but possesses no LDL receptor activity to eliminate its contributions toward apoE-VLDL uptake. Results Although LRP in these cells is fully active as established by substantial α2macroglobulin binding and internalization, uptake of apoE-VLDL is absent. Expression of human Syn-1 cDNA restored apoE-VLDL binding and uptake by these cells. Competition for this uptake with an LRP ligand-binding antagonist had little or no effect, whereas co-incubation with heparin abolished apoE-VLDL internalization. Depleting Syn-1 expressing cells of K+, to block clathrin-mediated endocytosis, showed no inhibition of Syn-1 internalization of apoE-VLDL. By contrast, treatment of cells with nystatin to inhibit lipid raft function, prevented the uptake of apoE-VLDL by Syn-1. Conclusion These data demonstrate that Syn-1 is able to mediate apoE-VLDL uptake in human fibroblasts with little or no contribution from LRP and that the endocytic path taken by Syn-1 is clathrin-independent and relies upon lipid raft function. These data are consistent with previous studies demonstrating Syn-1 association with lipid raft domains.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3