Apolipoprotein E-containing lipoproteins and their extracellular interactions with LRP1 affect LPS-induced inflammation

Author:

Akahane Shogo1,Matsuura Hiroto1,Kaido Takahiro12,Usami Yoko2,Ishimine Nau2,Uehara Takeshi2,Yamauchi Kazuyoshi13ORCID

Affiliation:

1. Department of Clinical Laboratory Investigation , 34808 Graduate School of Medicine, Shinshu University , Matsumoto 390-8621 , Japan

2. Department of Laboratory Medicine , 34808 Shinshu University Hospital , Matsumoto 390-8621 , Japan

3. Department of Biomedical Laboratory Sciences , 34808 School of Health Sciences, Shinshu University , 3-1-1 Asahi , Matsumoto 390-8621 , Japan

Abstract

Abstract The linkage between low-density lipoprotein receptor-related protein (LRP)1-mediated metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP) and the lipopolysaccharide (LPS)-induced inflammatory response contributes to the pathogenesis of sepsis; however, the underlying mechanisms are unclear. Therefore, in this study, the effects of apoE-LP and their constituents on the mRNA expression of interleukin (IL)-6 and LRP1 were evaluated using a culture system of human fibroblasts supplemented with LPS and apoE-containing emulsion particles (apoE-EP). The affinity of apoE-LP for LPS was examined using the interaction between fluorescence-labeled LPS and serum lipoprotein fractions. LPS-induced inflammation significantly upregulated the mRNA expression of IL-6 and LRP1. This upregulation was markedly suppressed by pre-incubation of LPS with apoE-EP or its constituents (apoE or EP). The suppressive effect of apoE-EP on IL-6 upregulation was attenuated in the presence of lactoferrin, an inhibitor of LRP1. The prepared apoE-EP and serum triglyceride-rich lipoproteins showed significant affinity for LPS. However, these affinities appeared to be lower than expected based on the extent to which IL-6 upregulation was suppressed by pre-incubation of LPS with apoE-EP. Overall, these results indicate that LPS-induced inflammation may be regulated by 1) the LPS-neutralizing effect of apoE-LP, 2) anti-inflammatory effect of apoE, and 3) LRP1-mediated metabolic pathways.

Funder

Japan Society for the Promotion of Science

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3