Author:
Stellner Nikolaus I.,Rerop Zora S.,Mehlmer Norbert,Masri Mahmoud,Ringel Marion,Brück Thomas B.
Abstract
Abstract
Background
Cutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established.
Results
In this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3’-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner.
Conclusions
The implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Spagnuolo M, Yaguchi A, Blenner M. Oleaginous yeast for biofuel and oleochemical production. Curr Opin Biotechnol. 2019;57:73–81.
2. Rerop ZS, Stellner NI, Graban P, Haack M, Mehlmer N, Brück TB et al. Bioconversion of a Lignocellulosic Hydrolysate to Single Cell Oil for Biofuel Production in a Cost-Efficient Fermentation Process. fermentation. 2023;9.
3. Kourist R, Bracharz F, Lorenzen J, Kracht ON, Chovatia M, Daum C, et al. Genomics and Transcriptomics Analyses of the Oil-Accumulating Basidiomycete Yeast. 2015;6:1–13.
4. Shaigani P, Awad D, Redai V, Fuchs M, Haack M, Mehlmer N, et al. Oleaginous yeasts- substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microb Cell Fact. 2021;20:1–18.
5. Fuchs T, Melcher F, Rerop ZS, Lorenzen J, Shaigani P, Awad D, et al. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb Cell Fact. 2021;20:1–18.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nourseothricin as a novel drug for selection of transgenic Giardia lamblia;International Journal for Parasitology: Drugs and Drug Resistance;2024-08