Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms

Author:

Jafari Marziyeh,Daneshvar Mohammad Hosein

Abstract

Abstract Background Optimization of indirect shoot regeneration protocols is one of the key prerequisites for the development of Agrobacterium-mediated genetic transformation and/or genome editing in Passiflora caerulea. Comprehensive knowledge of indirect shoot regeneration and optimized protocol can be obtained by the application of a combination of machine learning (ML) and optimization algorithms. Materials and methods In the present investigation, the indirect shoot regeneration responses (i.e., de novo shoot regeneration rate, the number of de novo shoots, and length of de novo shoots) of P. caerulea were predicted based on different types and concentrations of PGRs (i.e., TDZ, BAP, PUT, KIN, and IBA) as well as callus types (i.e., callus derived from different explants including leaf, node, and internode) using generalized regression neural network (GRNN) and random forest (RF). Moreover, the developed models were integrated into the genetic algorithm (GA) to optimize the concentration of PGRs and callus types for maximizing indirect shoot regeneration responses. Moreover, sensitivity analysis was conducted to assess the importance of each input variable on the studied parameters. Results The results showed that both algorithms (RF and GRNN) had high predictive accuracy (R2 > 0.86) in both training and testing sets for modeling all studied parameters. Based on the results of optimization process, the highest de novo shoot regeneration rate (100%) would be obtained from callus derived from nodal segments cultured in the medium supplemented with 0.77 mg/L BAP plus 2.41 mg/L PUT plus 0.06 mg/L IBA. The results of the sensitivity analysis showed the explant-dependent impact of exogenous application of PGRs on indirect de novo shoot regeneration. Conclusions A combination of ML (GRNN and RF) and GA can display a forward-thinking aid to optimize and predict in vitro culture systems and consequentially cope with several challenges faced currently in Passiflora tissue culture.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3