Improvement of Culture Conditions and Plant Growth Regulators for In Vitro Callus Induction and Plant Regeneration in Paeonia lactiflora Pall.

Author:

Song Wenhui12,Song Yaohong12,Liu Xueting12,Zhang Xiaoju12,Xin Rujie12,Duan Siyang12,Guan Shixin12,Sun Xiaomei12

Affiliation:

1. College of Forestry, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Forest Tree Genetics Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Owing to its high ornamental, medicinal and horticultural values, herbaceous peony (Paeonia lactiflora Pall.) has been widely used as a landscaping and economical plant around the world. However, the lack of an efficient and stable regeneration system in P. lactiflora restricts its rapid propagation and large-scale production. By testing the key factors affecting callus formation, proliferation, adventitious bud induction and rooting, here, we developed an in vitro system for callus induction and regeneration in P. lactiflora. Our results show that callus formation was affected by explant types, culture environment, basal medium and plant growth regulators. Using cotyledons as explants, we established good conditions for P. lactiflora callus induction and callus proliferation. We effectively obtained adventitious buds differentiated from callus in Murashige and Skoog (MS) medium containing kinetin (KT) and thidiazuron (TDZ). Adventitious bud growth can be further promoted by adding gibberellin 3 (GA3), 1-naphthaleneacetic acid (NAA) and 6-benzyleaminopurine (6-BA) into the MS medium. A high percentage of rooting can be achieved by adding indolebutyric acid (IBA) and activated carbon (AC) to ½ MS medium. Overall, our system promotes callus induction and adventitious bud regeneration for P. lactiflora through improved culture conditions and plant growth regulators in the culture media, and lays a foundation for subsequent genetic engineering research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3