Attenuation of intestinal inflammation in IL-10 deficient mice by a plasmid carrying Lactococcus lactis strain

Author:

Zurita-Turk MeritxellORCID,Mendes Souza Bianca,Prósperi de Castro Camila,Bastos Pereira Vanessa,Pecini da Cunha Vanessa,Melo Preisser Tatiane,Caetano de Faria Ana Maria,Carmona Cara Machado Denise,Miyoshi Anderson

Abstract

Abstract Background Inflammatory bowel diseases (IBD) are intestinal disorders characterized by inflammation in the gastrointestinal tract (GIT) and to date, no efficient treatments exist. Interleukin-10 (IL-10), one of the most important anti-inflammatory cytokines of the immune response, has been under study due to its potential for IBD therapy; however, systemic treatments lead to undesirable side effects and oral administration is limited due to its quick degradation. To avoid these bottlenecks, we previously engineered an invasive Lactococcus lactis (L. lactis) strain capable of delivering, directly to host cells, a eukaryotic DNA expression vector coding for IL-10 of Mus musculus (pValac:il-10) that diminished inflammation in two induced mouse models of intestinal inflammation. Thus, the aim of this study was to analyze its therapeutic effect in the IL-10-deficient mouse model (IL-10−/−) that spontaneously and gradually develops an inflammation that modifies the immune system and resembles Crohn’s disease (CD) in humans, and evaluate if it would also diminish and/or prevent the onset of this disease. Results Oral administration of L. lactis MG1363 FnBPA+ (pValac:il-10) to IL-10−/− mice not only led to IL-10 production by these, but consequently also diminished the severe development of the disease, with animals showing lower macroscopic scores and histological damages, increased IL-10 levels and tendency to lower pro-inflammatory cytokine levels. Conclusions The results of this study, together with the previously published ones using this DNA delivery-based strategy, show that it is capable of creating and maintaining an anti-inflammatory environment in the GIT and thus effectively diminish the onset of inflammation in various mouse models.

Funder

CAPES

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3