Blueberry–Mulberry Extract Alleviates Cognitive Impairment, Regulates Gut Metabolites, and Inhibits Inflammation in Aged Mice

Author:

Li Hui1,Xiao Changhao12,Wang Feng1,Guo Xuqi1,Zhou Zhongkai2,Jiang Yugang1

Affiliation:

1. Institute of Environmental and Operational Medicine, Tianjin 300050, China

2. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China

Abstract

Cognitive impairment is associated with aging; however, the underlying mechanism remains unclear. Our previous study found that polyphenol-rich blueberry–mulberry extract (BME) had an antioxidant capability and effectively alleviated cognitive impairment in a mouse model of Alzheimer’s disease. Thus, we hypothesized that BME would improve cognitive performance in naturally aging mice and assessed its effects on related signaling pathways. Eighteen-month-old C57BL/6J mice were gavaged with 300 mg/kg/d of BME for 6 weeks. Behavioral phenotypes, cytokine levels, tight junction protein levels, and the histopathology of the brain were assessed, and 16S ribosomal RNA sequencing and targeted metabolome analyses were used for gut microbiota and metabolite measurements. Our results showed that the cognitive performance of aged mice in the Morris water maze test was improved after BME treatment, neuronal loss was reduced, IL-6 and TNF-α levels in the brain and intestine were decreased, and the levels of intestinal tight junction proteins (ZO-1 and occludin) were increased. Further, 16S sequencing showed that BME significantly increased the relative abundance of Lactobacillus, Streptococcus, and Lactococcus and decreased the relative abundance of Blautia, Lachnoclostridium, and Roseburia in the gut. A targeted metabolomic analysis showed that BME significantly increased the levels of 21 metabolites, including α-linolenic acid, vanillic acid, and N-acetylserotonin. In conclusion, BME alters the gut microbiota and regulates gut metabolites in aged mice, which may contribute to the alleviation of cognitive impairment and to inflammation inhibition in both the brain and the gut. Our results provide a basis for future research on natural antioxidant intervention as a treatment strategy for aging-related cognitive impairment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3