Affiliation:
1. School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
Abstract
Aging is an irreversible process of natural degradation of bodily function. The increase in the aging population, as well as the rise in the incidence of aging-related diseases, poses one of the most pressing global challenges. Hemp seed oil, extracted from the seeds of hemp (Cannabis sativa L.), possesses significant nutritional and biological properties attributed to its unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, there is limited knowledge regarding the anti-aging mechanism of hemp seed oil. This study aimed to evaluate the beneficial effects and potential mechanisms of hemp seed oil in a D-galactose (D-gal)-induced aging rat model through a combined analysis of metabolomics and 16S rRNA gene sequencing. Using nuclear magnetic resonance (NMR)-based metabolomics, significant alterations in serum and urine metabolic phenotypes were observed between the D-gal-induced aging rat model and the healthy control group. Eight and thirteen differentially expressed metabolites related to aging were identified in serum and urine, respectively. Treatment with hemp seed oil significantly restored four and ten potential biomarkers in serum and urine, respectively. The proposed pathways primarily included energy metabolism, amino acid metabolism, one-carbon metabolism, and lipid metabolism. Furthermore, 16S rRNA gene sequencing analysis revealed significant changes in the gut microbiota of aged rats. Compared to the model group, the hemp seed oil group exhibited significant alterations in the abundance of 21 bacterial taxa at the genus level. The results indicated that hemp seed oil suppressed the prevalence of pathogenic bacterial genera such as Streptococcus, Rothia, and Parabacteroides. Additionally, it facilitated the proliferation of the genera Lachnospirace_NK4B4_group and Lachnospirace_UCG_001, while also enhancing the relative abundance of the genus Butyricoccus; a producer of short-chain fatty acids (SCFAs). These findings provided new insights into the pathogenesis of aging and further supported the potential utility of hemp seed oil as an anti-aging therapeutic agent.
Funder
Innovation Project of Universities in Guangdong Province of China