Identification and characterization of sugar-regulated promoters in Chaetomium thermophilum

Author:

Reislöhner Sven,Schermann Geza,Kilian Max,Santamaría-Muñoz Daniela,Zimmerli Christian,Kellner Nikola,Baßler Jochen,Brunner Michael,Hurt Ed

Abstract

AbstractThe thermophilic fungus Chaetomium thermophilum has been used extensively for biochemical and high-resolution structural studies of protein complexes. However, subsequent functional analyses of these assemblies have been hindered owing to the lack of genetic tools compatible with this thermophile, which are typically suited to other mesophilic eukaryotic model organisms, in particular the yeast Saccharomyces cerevisiae. Hence, we aimed to find genes from C. thermophilum that are expressed under the control of different sugars and examine their associated 5’ untranslated regions as promoters responsible for sugar-regulated gene expression. To identify sugar-regulated promoters in C. thermophilum, we performed comparative xylose- versus glucose-dependent gene expression studies, which uncovered a number of enzymes with induced expression in the presence of xylose but repressed expression in glucose-supplemented media. Subsequently, we cloned the promoters of the two most stringently regulated genes, the xylosidase-like gene (XYL) and xylitol dehydrogenase (XDH), obtained from this genome-wide analysis in front of a thermostable yellow fluorescent protein (YFP) reporter. With this, we demonstrated xylose-dependent YFP expression by both Western blotting and live-cell imaging fluorescence microscopy. Prompted by these results, we expressed the C. thermophilum orthologue of a well-characterized dominant-negative ribosome assembly factor mutant, under the control of the XDH promoter, which allowed us to induce a nuclear export defect on the pre-60S subunit when C. thermophilum cells were grown in xylose- but not glucose-containing medium. Altogether, our study identified xylose-regulatable promoters in C. thermophilum, which might facilitate functional studies of genes of interest in this thermophilic eukaryotic model organism.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3