Potential and utilization of thermophiles and thermostable enzymes in biorefining

Author:

Turner Pernilla,Mamo Gashaw,Karlsson Eva Nordberg

Abstract

Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Reference293 articles.

1. Brock TD, Freeze H: Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. Journal of Bacteriology. 1969, 98: 289-297.

2. Brock TD: Introduction, an overview of the thermophiles. Thermophiles: General, Molecular and Applied Microbiology. Edited by: Brock TD. 1986, New York: John Wiley & Sons, 1-16.

3. Maheshwari R, Bharadwaj G, Bhat MK: Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews. 2000, 64: 461-488.

4. Kristjansson JK, Stetter KO: Thermophilic bacteria. Thermophilic bacteria. Edited by: Kristjansson JK. 1992, London: CRC Press Inc, 1-18.

5. Stetter KO: Hyperthermophilic prokaryotes. FEMS Microbiology Reviews. 1996, 18: 149-158.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3