Event-related EEG oscillatory responses elicited by dynamic facial expression

Author:

Aktürk Tuba,de Graaf Tom A.,Abra Yasemin,Şahoğlu-Göktaş Sevilay,Özkan Dilek,Kula Aysun,Güntekin BaharORCID

Abstract

Abstract Background Recognition of facial expressions (FEs) plays a crucial role in social interactions. Most studies on FE recognition use static (image) stimuli, even though real-life FEs are dynamic. FE processing is complex and multifaceted, and its neural correlates remain unclear. Transitioning from static to dynamic FE stimuli might help disentangle the neural oscillatory mechanisms underlying face processing and recognition of emotion expression. To our knowledge, we here present the first time–frequency exploration of oscillatory brain mechanisms underlying the processing of dynamic FEs. Results Videos of joyful, fearful, and neutral dynamic facial expressions were presented to 18 included healthy young adults. We analyzed event-related activity in electroencephalography (EEG) data, focusing on the delta, theta, and alpha-band oscillations. Since the videos involved a transition from neutral to emotional expressions (onset around 500 ms), we identified time windows that might correspond to face perception initially (time window 1; first TW), and emotion expression recognition subsequently (around 1000 ms; second TW). First TW showed increased power and phase-locking values for all frequency bands. In the first TW, power and phase-locking values were higher in the delta and theta bands for emotional FEs as compared to neutral FEs, thus potentially serving as a marker for emotion recognition in dynamic face processing. Conclusions Our time–frequency exploration revealed consistent oscillatory responses to complex, dynamic, ecologically meaningful FE stimuli. We conclude that while dynamic FE processing involves complex network dynamics, dynamic FEs were successfully used to reveal temporally separate oscillation responses related to face processing and subsequently emotion expression recognition.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3