Abstract
Understanding brain reactions to facial expressions can help in explaining emotion-processing and memory mechanisms. The purpose of this research is to examine the dynamics of electrical brain activity caused by visual emotional stimuli. The focus is on detecting changes in cognitive mechanisms produced by negative, positive, and neutral expressions on human faces. Three methods were used to study brain reactions: power spectral density, detrending moving average (DMA), and coherence analysis. Using electroencephalogram (EEG) recordings from 48 subjects while presenting facial image stimuli from the International Affective Picture System, the topographic representation of the evoked responses was acquired and evaluated to disclose the specific EEG-based activity patterns in the cortex. The theta and beta systems are two key cognitive systems of the brain that are activated differently on the basis of gender. The obtained results also demonstrate that the DMA method can provide information about the cortical networks’ functioning stability, so it can be coupled with more prevalent methods of EEG analysis.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献