Method for Assessing the Influence of Phobic Stimuli in Virtual Simulators

Author:

Obukhov Artem1ORCID,Krasnyanskiy Mikhail1,Volkov Andrey1ORCID,Nazarova Alexandra1,Teselkin Daniil1ORCID,Patutin Kirill1,Zajceva Darya1

Affiliation:

1. The Laboratory of Medical VR Simulator Systems for Training, Diagnostics and Rehabilitation, Tambov State Technical University, Tambov 392000, Russia

Abstract

In the organizing of professional training, the assessment of the trainee’s reaction and state in stressful situations is of great importance. Phobic reactions are a specific type of stress reaction that, however, is rarely taken into account when developing virtual simulators, and are a risk factor in the workplace. A method for evaluating the impact of various phobic stimuli on the quality of training is considered, which takes into account the time, accuracy, and speed of performing professional tasks, as well as the characteristics of electroencephalograms (the amplitude, power, coherence, Hurst exponent, and degree of interhemispheric asymmetry). To evaluate the impact of phobias during experimental research, participants in the experimental group performed exercises in different environments: under normal conditions and under the influence of acrophobic and arachnophobic stimuli. The participants were divided into subgroups using clustering algorithms and an expert neurologist. After that, a comparison of the subgroup metrics was carried out. The research conducted makes it possible to partially confirm our hypotheses about the negative impact of phobic effects on some participants in the experimental group. The relationship between the reaction to a phobia and the characteristics of brain activity was revealed, and the characteristics of the electroencephalogram signal were considered as the metrics for detecting a phobic reaction.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3