Abstract
Abstract
Background
Quantitative ultrasound has been used for the assessment of cancellous bone status. The attenuation mechanisms of cancellous bone, however, have not been well understood, because the microstructure of cancellous bone is significantly inhomogeneous and the interaction between ultrasound and the microstructure of cancellous bone is complex. In this study, a theoretical approach was applied to investigate the influence of the microstructure of cancellous bone on ultrasonic attenuation.
Results
The scattering from a trabecular cylinder was significantly angle dependent. The dependencies of the ultrasonic attenuation on frequency, scatterer size, and porosity were explored from the theoretical calculation. Prediction results showed that the ultrasonic attenuation increased with the increase of frequency and decreased linearly with the increase in porosity, and the broadband ultrasound attenuation decreased with the increase in porosity. All these predicted trends were consistent with published experimental data. In addition, our model successfully explained the principle of broadband ultrasound attenuation measurement (i.e., the attenuation over the frequency range 0.3–0.65 MHz was approximately linearly proportional to frequency) by considering the contributions of scattering and absorption to attenuation.
Conclusion
The proposed theoretical model may be a potentially valuable tool for understanding the interaction of ultrasound with cancellous bone.
Funder
Natural Science Foundation of Zhejiang Province
Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China
Health Foundation for Creative Talents in Zhejiang Province
Project Foundation for the College Young and Middle-aged Academic Leader of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference40 articles.
1. Chan C, Mohamed N, Ima-Nirwana S, Chin K-Y. A review of knowledge, belief and practice regarding osteoporosis among adolescents and young adults. Int J Environ Res Public Health. 2018;15(8):1727.
2. Svedbom A, Ivergård M, Hernlund E, Rizzoli R, Kanis JA. Epidemiology and economic burden of osteoporosis in Switzerland. Arch Osteoporos. 2014;9(1):187.
3. Srichan W, Thasanasuwan W, Kijboonchoo K, Rojroongwasinkul N, Wimonpeerapattana W, Khouw I, Deurenberg P. Bone status measured by quantitative ultrasound: a comparison with DXA in Thai children. Eur J Clin Nutr. 2015;2008(9):1497–507.
4. Langton C, Palmer S, Porter R. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13(2):89–91.
5. Truscott JG. Quantitative ultrasound—assessment of osteoporosis and bone status. In: Njeh CF, Hans D, Fuerst T, Glüer C-C, Genant HK, editors. Ultrasound in medicine and biology. London: Martin Dunitz; 1999. ISBN 1-85317-679-6, 420 pp. 2000. Vol. 26, No. 9. p. 1539.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献