Influence of cancellous bone microstructure on ultrasonic attenuation: a theoretical prediction

Author:

Liu Jinjin,Lan Li,Zhou Jiafeng,Yang YunjunORCID

Abstract

Abstract Background Quantitative ultrasound has been used for the assessment of cancellous bone status. The attenuation mechanisms of cancellous bone, however, have not been well understood, because the microstructure of cancellous bone is significantly inhomogeneous and the interaction between ultrasound and the microstructure of cancellous bone is complex. In this study, a theoretical approach was applied to investigate the influence of the microstructure of cancellous bone on ultrasonic attenuation. Results The scattering from a trabecular cylinder was significantly angle dependent. The dependencies of the ultrasonic attenuation on frequency, scatterer size, and porosity were explored from the theoretical calculation. Prediction results showed that the ultrasonic attenuation increased with the increase of frequency and decreased linearly with the increase in porosity, and the broadband ultrasound attenuation decreased with the increase in porosity. All these predicted trends were consistent with published experimental data. In addition, our model successfully explained the principle of broadband ultrasound attenuation measurement (i.e., the attenuation over the frequency range 0.3–0.65 MHz was approximately linearly proportional to frequency) by considering the contributions of scattering and absorption to attenuation. Conclusion The proposed theoretical model may be a potentially valuable tool for understanding the interaction of ultrasound with cancellous bone.

Funder

Natural Science Foundation of Zhejiang Province

Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China

Health Foundation for Creative Talents in Zhejiang Province

Project Foundation for the College Young and Middle-aged Academic Leader of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference40 articles.

1. Chan C, Mohamed N, Ima-Nirwana S, Chin K-Y. A review of knowledge, belief and practice regarding osteoporosis among adolescents and young adults. Int J Environ Res Public Health. 2018;15(8):1727.

2. Svedbom A, Ivergård M, Hernlund E, Rizzoli R, Kanis JA. Epidemiology and economic burden of osteoporosis in Switzerland. Arch Osteoporos. 2014;9(1):187.

3. Srichan W, Thasanasuwan W, Kijboonchoo K, Rojroongwasinkul N, Wimonpeerapattana W, Khouw I, Deurenberg P. Bone status measured by quantitative ultrasound: a comparison with DXA in Thai children. Eur J Clin Nutr. 2015;2008(9):1497–507.

4. Langton C, Palmer S, Porter R. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13(2):89–91.

5. Truscott JG. Quantitative ultrasound—assessment of osteoporosis and bone status. In: Njeh CF, Hans D, Fuerst T, Glüer C-C, Genant HK, editors. Ultrasound in medicine and biology. London: Martin Dunitz; 1999. ISBN 1-85317-679-6, 420 pp. 2000. Vol. 26, No. 9. p. 1539.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3