Stiffness optimization and reliable design of a hip implant by using the potential of additive manufacturing processes

Author:

Risse LenaORCID,Woodcock Steven,Brüggemann Jan-Peter,Kullmer Gunter,Richard Hans Albert

Abstract

Abstract Background Due to the steadily increasing life expectancy of the population, the need for medical aids to maintain the previous quality of life is growing. The basis for independent mobility is a functional locomotor system. The hip joint can be so badly damaged by everyday wear or accelerated by illness that reconstruction by means of endoprostheses is necessary. Results In order to ensure a high quality of life for the patient after this procedure as well as a long service life of the prosthesis, a high-quality design is required, so that many different aspects have to be taken into account when developing prostheses. Long-term medical studies show that the service life and operational safety of a hip prosthesis by best possible adaptation of the stiffness to that of the bone can be increased. The use of additive manufacturing processes enables to specifically change the stiffness of implant structures. Conclusions Reduced implant stiffness leads to an increase in stress in the surrounding bone and thus to a reduction in bone resorption. Numerical methods are used to demonstrate this fact in the hip implant developed. The safety of use is nevertheless ensured by evaluating and taking into account the stresses that occur for critical load cases. These results are a promising basis to enable longer service life of prostheses in the future.

Funder

Universität Paderborn

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3