Abstract
Abstract
Background
Myocarditis, an inflammatory disease of the myocardium, is a serious hazard to human life due to the expansion of inflammatory lesions in the myocardium. The aim of this study was to investigate the role of hypoxia-inducible transcription factor (HIF)-1α and its inhibitor topotecan in the pathogenesis of myocarditis.
Methods
H9c2 cardiomyoblasts was stimulated with lipopolysaccharide (LPS) to simulate myocarditis model in vitro. The levels of myocardial damage markers were determined using commercially available kits. Western blotting was used to evaluate HIF-1α expression after LPS challenge. Then, after HIF-1α silencing, the contents of inflammatory factors were determined with enzyme-linked immunosorbent assay (ELISA). Cell viability was tested by means of a cell counting kit-8 (CCK-8) assay. Cell apoptosis was assessed by flow cytometry, and the expression of apoptotic proteins was examined using western blot analysis. Subsequently, HIF-1α was overexpressed and topotecan was employed to treat H9c2 cells under LPS exposure condition. The biological functions were detected again.
Results
LPS significantly elevated the levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin-I (cTn-I) in supernatant of H9c2 cell lysates. Additionally, LPS led to the notably upregulated expression of HIF-1α. HIF-1α-knockdown markedly decreased the concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 compared with the LPS-induced group. Moreover, the cell viability was conspicuously enhanced and cell apoptotic ratio was remarkably reduced, accompanied by downregulated expression of Bax, Bim, caspase 3 and caspase 9 after HIF-1α silencing. Consistently, HIF-1α gain-of-function significantly promoted the production of inflammatory cytokines and cell apoptosis, which was partially counteracted by topotecan administration.
Conclusion
To conclude, these findings demonstrated that HIF-1α inhibition by topotecan ameliorates LPS-induced myocarditis in vitro, providing a new approach in the treatment of myocarditis.
Funder
high-level medical reserved personnel training project of chongqing, chongqing, china
science and technology planning project of chongqing science and technology commossion, chongqing, china
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology