Author:
Liu Zhehao,Gao Jiazi,Gong He
Abstract
Abstract
Background
Bone is a dynamically hierarchical material that can be divided into length scales of several orders of magnitude. Exercise can cause bone deformation, which in turn affects bone mass and structure. This study aimed to study the effects of treadmill running with different intensities on the long bone integrity and muscle biomechanical properties of adult male rats.
Methods
Forty-eight 5-month-old male SD rats were randomly divided into 4 groups: i.e., sedentary group (SED), exercise with speed of 12 m/min group (EX12), 16 m/min group (EX16), and 20 m/min group (EX20). The exercise was carried out for 30 min every day, 5 days a week for 4 weeks. The femurs were examined using three-point bending test, microcomputer tomography scanning and nanoindentation test; the soleus muscle was dissected for tensile test; ALP and TRACP concentrations were measured by serum analysis.
Results
The failure load was significantly increased by the EX12 group, whereas the elastic modulus was not significantly changed. The microstructure and mineral densities of the trabecular and cortical bone were significantly improved by the EX12 group. The mechanical properties of the soleus muscle were significantly increased by treadmill exercise. Bone formation showed significant increase by the EX12 group. Statistically higher nanomechanical properties of cortical bone were detected in the EX12 group.
Conclusion
The speed of 12 m/min resulted in significant changes in the microstructure and biomechanical properties of bone; besides, it significantly increased the ultimate load of the soleus muscle. The different intensities of treadmill running in this study provide an experimental basis for the selection of exercise intensity for adult male rats.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jilin Province
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献