Deep learning based on susceptibility-weighted MR sequence for detecting cerebral microbleeds and classifying cerebral small vessel disease

Author:

Wu Ruizhen,Liu Huaqing,Li Hao,Chen Lifen,Wei Lei,Huang Xuehong,Liu Xu,Men Xuejiao,Li Xidan,Han Lanqing,Lu Zhengqi,Qin Bing

Abstract

Abstract Background Cerebral microbleeds (CMBs) serve as neuroimaging biomarkers to assess risk of intracerebral hemorrhage and diagnose cerebral small vessel disease (CSVD). Therefore, detecting CMBs can evaluate the risk of intracerebral hemorrhage and use its presence to support CSVD classification, both are conducive to optimizing CSVD management. This study aimed to develop and test a deep learning (DL) model based on susceptibility-weighted MR sequence (SWS) to detect CMBs and classify CSVD to assist neurologists in optimizing CSVD management. Patients with arteriolosclerosis (aSVD), cerebral amyloid angiopathy (CAA), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) treated at three centers were enrolled between January 2017 and May 2022 in this retrospective study. The SWSs of patients from two centers were used as the development set, and the SWSs of patients from the remaining center were used as the external test set. The DL model contains a Mask R-CNN for detecting CMBs and a multi-instance learning (MIL) network for classifying CSVD. The metrics for model performance included intersection over union (IoU), Dice score, recall, confusion matrices, receiver operating characteristic curve (ROC) analysis, accuracy, precision, and F1-score. Results A total of 364 SWS were recruited, including 336 in the development set and 28 in the external test set. IoU for the model was 0.523 ± 0.319, Dice score 0.627 ± 0.296, and recall 0.706 ± 0.365 for CMBs detection in the external test set. For CSVD classification, the model achieved a weighted-average AUC of 0.908 (95% CI 0.895–0.921), accuracy of 0.819 (95% CI 0.768–0.870), weighted-average precision of 0.864 (95% CI 0.831–0.897), and weighted-average F1-score of 0.829 (95% CI 0.782–0.876) in the external set, outperforming the performance of the neurologist group. Conclusion The DL model based on SWS can detect CMBs and classify CSVD, thereby assisting neurologists in optimizing CSVD management.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3