Author:
Barros Daniele M. S.,Moura Julio C. C.,Freire Cefas R.,Taleb Alexandre C.,Valentim Ricardo A. M.,Morais Philippi S. G.
Abstract
Abstract
Introduction
This is a systematic review on the main algorithms using machine learning (ML) in retinal image processing for glaucoma diagnosis and detection. ML has proven to be a significant tool for the development of computer aided technology. Furthermore, secondary research has been widely conducted over the years for ophthalmologists. Such aspects indicate the importance of ML in the context of retinal image processing.
Methods
The publications that were chosen to compose this review were gathered from Scopus, PubMed, IEEEXplore and Science Direct databases. Then, the papers published between 2014 and 2019 were selected . Researches that used the segmented optic disc method were excluded. Moreover, only the methods which applied the classification process were considered. The systematic analysis was performed in such studies and, thereupon, the results were summarized.
Discussion
Based on architectures used for ML in retinal image processing, some studies applied feature extraction and dimensionality reduction to detect and isolate important parts of the analyzed image. Differently, other works utilized a deep convolutional network. Based on the evaluated researches, the main difference between the architectures is the number of images demanded for processing and the high computational cost required to use deep learning techniques.
Conclusions
All the analyzed publications indicated it was possible to develop an automated system for glaucoma diagnosis. The disease severity and its high occurrence rates justify the researches which have been carried out. Recent computational techniques, such as deep learning, have shown to be promising technologies in fundus imaging. Although such a technique requires an extensive database and high computational costs, the studies show that the data augmentation and transfer learning techniques have been applied as an alternative way to optimize and reduce networks training.
Funder
Funda Norte-Rio-Grandense de Pesquisa e Cultura
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference77 articles.
1. Khan KS, Kunz R, Kleijnen J, Antes G. Five steps to conducting a systematic review. J R Soc Med. 2003;96(3):118–21.
2. Ali N, Wajid SA, Saeed N, Khan MD. The relative frequency and risk factors of primary open angle glaucoma and angle closure glaucoma. Pak J Ophthalmol. 2007;23(3):117–21.
3. International Council of Ophthalmology: Guidelines for glaucoma eye car. http://www.icoph.org/downloads/ICOGlaucomaGuidelines.pdf (2016). International Council of Ophthalmology
4. Boland MV, Ervin A-M, Friedman DS, Jampel HD, Hawkins BS, Vollenweider D, Chelladurai Y, Ward D, Suarez-Cuervo C, Robinson KA. Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the us preventive services task force. Ann Intern Med. 2013;158(4):271–9.
5. Divya L, Jacob J. Performance analysis of glaucoma detection approaches from fundus images. Proc Comput Sci. 2018;143:544–51.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献