Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order

Author:

Habeb Abduljlil Abduljlil Ali Abduljlil1ORCID,Taresh Mundher Mohammed2,Li Jintang1,Gao Zhan1ORCID,Zhu Ningbo13

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China

2. College of Engineering and Information Technology, Taiz University, Taiz, Yemen

3. Research Institute of Hunan University in Chongqing, Chongqing 400000, China

Abstract

Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology.

Funder

National Natural Science Foundation of China

Chongqing Natural Science Foundation

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3