Abstract
Abstract
Background
The worldwide society is currently facing an epidemiological shift due to the significant improvement in life expectancy and increase in the elderly population. This shift requires the public and scientific community to highlight successful aging (SA), as an indicator representing the quality of elderly people’s health. SA is a subjective, complex, and multidimensional concept; thus, its meaning or measuring is a difficult task. This study seeks to identify the most affecting factors on SA and fed them as input variables for constructing predictive models using machine learning (ML) algorithms.
Methods
Data from 1465 adults aged ≥ 60 years who were referred to health centers in Abadan city (Iran) between 2021 and 2022 were collected by interview. First, binary logistic regression (BLR) was used to identify the main factors influencing SA. Second, eight ML algorithms, including adaptive boosting (AdaBoost), bootstrap aggregating (Bagging), eXtreme Gradient Boosting (XG-Boost), random forest (RF), J-48, multilayered perceptron (MLP), Naïve Bayes (NB), and support vector machine (SVM), were trained to predict SA. Finally, their performance was evaluated using metrics derived from the confusion matrix to determine the best model.
Results
The experimental results showed that 44 factors had a meaningful relationship with SA as the output class. In total, the RF algorithm with sensitivity = 0.95 ± 0.01, specificity = 0.94 ± 0.01, accuracy = 0.94 ± 0.005, and F-score = 0.94 ± 0.003 yielded the best performance for predicting SA.
Conclusions
Compared to other selected ML methods, the effectiveness of the RF as a bagging algorithm in predicting SA was significantly better. Our developed prediction models can provide, gerontologists, geriatric nursing, healthcare administrators, and policymakers with a reliable and responsive tool to improve elderly outcomes.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献