Abstract
Abstract
Background
Characterisation of heart rate (HR) dynamics and their dependence on exercise intensity provides a basis for feedback design of automatic HR control systems. This work aimed to investigate whether the second-order models with separate Phase I and Phase II components of HR response can achieve better fitting performance compared to the first-order models that do not delineate the two phases.
Methods
Eleven participants each performed two open-loop identification tests while running at moderate-to-vigorous intensity on a treadmill. Treadmill speed was changed as a pseudo-random binary sequence (PRBS) to excite both the Phase I and Phase II components. A counterbalanced cross-validation approach was implemented for model parameter estimation and validation.
Results
Comparison of validation outcomes for 22 pairs of first- and second-order models showed that root-mean-square error (RMSE) was significantly lower and fit (normalised RMSE) significantly higher for the second-order models: RMSE was 2.07 bpm ± 0.36 bpm vs. 2.27 bpm ± 0.36 bpm (bpm = beats per min), second order vs. first order, with $$p = 2.8 \times 10^{-10}$$
p
=
2.8
×
10
-
10
; fit was $$54.5\% \pm 5.2$$
54.5
%
±
5.2
% vs. $$50.2\% \pm 4.8$$
50.2
%
±
4.8
%, $$p = 6.8 \times 10^{-10}$$
p
=
6.8
×
10
-
10
.
Conclusion
Second-order models give significantly better goodness-of-fit than first-order models, likely due to the inclusion of both Phase I and Phase II components of heart rate response. Future work should investigate alternative parameterisations of the PRBS excitation, and whether feedback controllers calculated using second-order models give better performance than those based on first-order models.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献