Physical performance estimation in practice: A systematic review of advancements in performance prediction and modeling in cycling

Author:

Stessens Loes1ORCID,Gielen Jasper1,Meeusen Romain2,Aerts Jean-Marie1

Affiliation:

1. M3-BIORES, KU Leuven, Leuven, Belgium

2. Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium

Abstract

Physical performance in cycling is commonly evaluated with laboratory-based performance markers. However, these markers are not monitored on a regular basis, mainly due to the high costs of testing equipment, invasive sampling and time-intensive protocols. The use of mathematical modeling offers a promising alternative allowing for consistent performance monitoring, identification of influential variables affecting performance, and facilitation of planning, monitoring, and predictive analysis. Wearable technology, such as physiological and biomechanical sensors, can be integrated with mathematical models to enhance the practicality of performance monitoring and enable real-time feedback and personalized training recommendations. In this systematic review, we attempted to provide an overview of the developments in predicting and modeling of performance in cycling and their respective practical applications. The PRISMA framework yielded 52 studies that met the inclusion criteria. The models were discussed according to their modeling goal: characterizing kinetics, alternatives to the gold-standard, training control, observing training effects, predicting competitive performance and optimizing performance. Field-based models and technological advancements were highlighted as solutions to the limitations of gold-standard testing. Due to the lower accuracies of modeling techniques, the gold-standard laboratory-based methods of testing will not be replaced by mathematical models. However, models do form a more practical alternative for regular monitoring and a powerful tool for training and competition optimization. A modeling technique needs to be individualized to the goal and the person and be as simple as possible to allow regular monitoring. Ideally, the technique would work in the field, uses submaximal exercise intensities and integrates technological advancements such as wearable technology and machine learning to increase the practicality even more.

Funder

Agentschap Innoveren en Ondernemen

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3