Segmentation of small ground glass opacity pulmonary nodules based on Markov random field energy and Bayesian probability difference

Author:

Zhang Shaorong,Chen Xiangmeng,Zhu ZhibinORCID,Feng Bao,Chen Yehang,Long Wansheng

Abstract

Abstract Background Image segmentation is an important part of computer-aided diagnosis (CAD), the segmentation of small ground glass opacity (GGO) pulmonary nodules is beneficial for the early detection of lung cancer. For the segmentation of small GGO pulmonary nodules, an integrated active contour model based on Markov random field energy and Bayesian probability difference (IACM_MRFEBPD) is proposed in this paper. Methods First, the Markov random field (MRF) is constructed on the computed tomography (CT) images, then the MRF energy is calculated. The MRF energy is used to construct the region term. It can not only enhance the contrast between pulmonary nodule and the background region, but also solve the problem of intensity inhomogeneity using local spatial correlation information between neighboring pixels in the image. Second, the Gaussian mixture model is used to establish the probability model of the image, and the model parameters are estimated by the expectation maximization (EM) algorithm. So the Bayesian posterior probability difference of each pixel can be calculated. The probability difference is used to construct the boundary detection term, which is 0 at the boundary. Therefore, the blurred boundary problem can be solved. Finally, under the framework of the level set, the integrated active contour model is constructed. Results To verify the effectiveness of the proposed method, the public data of the lung image database consortium and image database resource initiative (LIDC-IDRI) and the clinical data of the Affiliated Jiangmen Hospital of Sun Yat-sen University are used to perform experiments, and the intersection over union (IOU) score is used to evaluate the segmentation methods. Compared with other methods, the proposed method achieves the best results with the highest average IOU of 0.7444, 0.7503, and 0.7450 for LIDC-IDRI test set, clinical test set, and all test sets, respectively. Conclusions The experiment results show that the proposed method can segment various small GGO pulmonary nodules more accurately and robustly, which is helpful for the accurate evaluation of medical imaging.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Guangxi Key Laboratory of Automatic Detection Technology and Instrument Foundation

Innovation Project of Guet Graduate Education

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3