Author:
Chen Fangzhou,Wang Peng,Yin Zhe,Yang Huiying,Hu Lingfei,Yu Ting,Jing Ying,Guan Jiayao,Wu Jiahong,Zhou Dongsheng
Abstract
Abstract
Background
The carbapenem-resistance genes blaVIM are widely disseminated in Pseudomonas, and frequently harbored within class 1 integrons that reside within various mobile genetic elements (MGEs). However, there are few reports on detailed genetic dissection of blaVIM-carrying MGEs in Pseudomonas.
Methods
This study presented the complete sequences of five blaVIM-2/-4-carrying MGEs, including two plasmids, two chromosomal integrative and mobilizable elements (IMEs), and one chromosomal integrative and conjugative element (ICE) from five different Pseudomonas isolates.
Results
The two plasmids were assigned to a novel incompatibility (Inc) group IncpSTY, which included only seven available plasmids with determined complete sequences and could be further divided into three subgroups IncpSTY-1/2/3. A detailed sequence comparison was then applied to a collection of 15 MGEs belonging to four different groups: three representative IncpSTY plasmids, two Tn6916-related IMEs, two Tn6918-related IMEs, and eight Tn6417-related ICEs and ten of these 15 MGEs were first time identified. At least 22 genes involving resistance to seven different categories of antibiotics and heavy metals were identified within these 15 MGEs, and most of these resistance genes were located within the accessory modules integrated as exogenous DNA regions into these MGEs. Especially, eleven of these 15 MGEs carried the blaVIM genes, which were located within 11 different concise class 1 integrons.
Conclusion
These blaVIM-carrying integrons were further integrated into the above plasmids, IMEs/ICEs with intercellular mobility. These MGEs could transfer between Pseudomonas isolates, which resulted in the accumulation and spread of blaVIM among Pseudomonas and thus was helpful for the bacteria to survival from the stress of antibiotics. Data presented here provided a deeper insight into the genetic diversification and evolution of VIM-encoding MGEs in Pseudomonas.
Funder
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Microbiology (medical),General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献