PneumoniaCheck, a novel aerosol collection device, permits capture of airborne Mycobacterium tuberculosis and characterisation of the cough aeromicrobiome in people with tuberculosis

Author:

Chiyaka Tinaye L.,Nyawo Georgina R.,Naidoo Charissa C.,Moodley Suventha,Clemente Jose C.,Malherbe Stephanus T.,Warren Robin M.,Ku David N.,Segal Leopoldo N.,Theron Grant

Abstract

Abstract Background Tuberculosis (TB), a major cause of disease and antimicrobial resistance, is spread via aerosols. Aerosols have diagnostic potential and airborne-microbes other than Mycobacterium tuberculosis complex (MTBC) may influence transmission. We evaluated whether PneumoniaCheck (PMC), a commercial aerosol collection device, captures MTBC and the aeromicrobiome of people with TB. Methods PMC was done in sputum culture-positive people (≥ 30 forced coughs each, n = 16) pre-treatment and PMC air reservoir (bag, corresponding to upper airways) and filter (lower airways) washes underwent Xpert MTB/RIF Ultra (Ultra) and 16S rRNA gene sequencing (sequencing also done on sputum). In a subset (n = 6), PMC microbiota (bag, filter) was compared to oral washes and bronchoalveolar lavage fluid (BALF). Findings 54% (7/13) bags and 46% (6/14) filters were Ultra-positive. Sequencing read counts and microbial diversity did not differ across bags, filters, and sputum. However, microbial composition in bags (Sphingobium-, Corynebacterium-, Novosphingobium-enriched) and filters (Mycobacterium-, Sphingobium-, Corynebacterium-enriched) each differed vs. sputum. Furthermore, sequencing only detected Mycobacterium in bags and filters but not sputum. In the subset, bag and filter microbial diversity did not differ vs. oral washes or BALF but microbial composition differed. Bags vs. BALF were Sphingobium-enriched and Mycobacterium-, Streptococcus-, and Anaerosinus-depleted (Anaerosinus also depleted in filters vs. BALF). Compared to BALF, none of the aerosol-enriched taxa were enriched in oral washes or sputum. Interpretation PMC captures aerosols with Ultra-detectable MTBC and MTBC is more detectable in aerosols than sputum by sequencing. The aeromicrobiome is distinct from sputum, oral washes and BALF and contains differentially-enriched lower respiratory tract microbes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3