Diagnosing Tuberculosis: What Do New Technologies Allow Us to (Not) Do?

Author:

Abdulgader Shima M.,Okunola Anna O.ORCID,Ndlangalavu GcobisaORCID,Reeve Byron W.P.ORCID,Allwood Brian W.,Koegelenberg Coenraad F.N.ORCID,Warren Rob M.,Theron Grant

Abstract

New tuberculosis (TB) diagnostics are at a crossroads: their development, evaluation, and implementation is severely damaged by resource diversion due to COVID-19. Yet several technologies, especially those with potential for non-invasive non-sputum-based testing, hold promise for efficiently triaging and rapidly confirming TB near point-of-care. Such tests are, however, progressing through the pipeline slowly and will take years to reach patients and health workers. Compellingly, such tests will create new opportunities for difficult-to-diagnose populations, including primary care attendees (all-comers in high burden settings irrespective of reason for presentation) and community members (with early stage disease or risk factors like HIV), many of whom cannot easily produce sputum. Critically, all upcoming technologies have limitations that implementers and health workers need to be cognizant of to ensure optimal deployment without undermining confidence in a technology that still offers improvements over the status quo. In this state-of-the-art review, we critically appraise such technologies for active pulmonary TB diagnosis. We highlight strengths, limitations, outstanding research questions, and how current and future tests could be used in the presence of these limitations and uncertainties. Among triage tests, CRP (for which commercial near point-of-care devices exist) and computer-aided detection software with digital chest X-ray hold promise, together with late-stage blood-based assays that detect host and/or microbial biomarkers; however, aside from a handful of prototypes, the latter category has a shortage of promising late-stage alternatives. Furthermore, positive results from new triage tests may have utility in people without TB; however, their utility for informing diagnostic pathways for other diseases is under-researched (most sick people tested for TB do not have TB). For confirmatory tests, few true point-of-care options will be available soon; however, combining novel approaches like tongue swabs with established tests like Ultra have short-term promise but first require optimizations to specimen collection and processing procedures. Concerningly, no technologies yet have compelling evidence of meeting the World Health Organization optimal target product profile performance criteria, especially for important operational criteria crucial for field deployment. This is alarming as the target product profile criteria are themselves almost a decade old and require urgent revision, especially to cater for technologies made prominent by the COVID-19 diagnostic response (e.g., at-home testing and connectivity solutions). Throughout the review, we underscore the importance of how target populations and settings affect test performance and how the criteria by which these tests should be judged vary by use case, including in active case finding. Lastly, we advocate for health workers and researchers to themselves be vocal proponents of the uptake of both new tests and those – already available tests that remain suboptimally utilized.

Publisher

S. Karger AG

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3