Abstract
Abstract
Background
Households, as end energy users, consume grid electricity to meet their energy demands. However, grids across the globe for energy production are majorly based on fossil fuel technology and make the highest contributions to global warming and climate change due to greenhouse gases (GHG) emissions. This generic study aims to investigate the minute role of a single-end energy consumer in GHG mitigation by switching to a rooftop PV system to meet his energy demands and trading surplus energy to the grid through its techno-economic analysis.
Method
For the study impact, NASA Meteorological Data are used to select an ideal single energy user equipped with a 10-kW PV system based on annual average daily solar radiation and ambient temperature through MATLAB/Simulink, for 11 populous cities in Pakistan. Helioscope software is used to select tilt and azimuthal angles to maximize the solar radiation intercept. Afterward, RETScreen software is used for cost, financial and GHG analysis.
Result and conclusion
A single end energy user equipped with a 10-kW PV system switched to a green energy source from a fossil fuel-based grid has the potential to avoid the burning of 3570.6 L of gasoline by producing 16,832 kWh of green energy per annum, while financially recovering the 10-kW PV system’s 7337$ grid-tied investment in 5 years (equity) and in 9 years (equity) in a 9077$ stand-alone system over its 25-year life. This approach provides relief to end energy users from high priced grid electricity through environmental friendliness by mitigating 8.3 tons of CO2 equivalent emissions per annum from energy production, while providing relief to the main grid by grid stabilization through peak shaving, in the broad sense.
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Development,Renewable Energy, Sustainability and the Environment
Reference42 articles.
1. Rauf O, Wang S, Yuan P, Tan J (2015) An overview of energy status and development in Pakistan. Renew Sustain Energy Rev 48:892–931
2. Nazir MS, Mahdi AJ, Bilal M, Sohail HM, Ali N, Iqbal HM (2019) Environmental impact and pollution-related challenges of renewable wind energy paradigm—a review. Sci Total Environ 683:436–444
3. Khalid A, Junaidi H (2013) Study of economic viability of photovoltaic electric power for Quetta-Pakistan. Renewable Energy 50:253–258
4. National Transmission and Despatch Company Limited, Energy Resources Report 2017–2018. http://ntdc.gov.pk/energy. Accessed 29 July 2020.
5. Dudley, B. (2018). BP statistical review of world energy. BP Statistical Review, London, UK, accessed Aug, 6(2018), 00116
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献