Power quality improvement using ultra capacitor based dynamic voltage restorer with real twisting sliding mode control

Author:

Shah M. S.ORCID,Mahmood T.ORCID,Ullah M. F.ORCID

Abstract

Introduction. Power quality is a major problem in today's power system, since it may have an impact on customers and utilities. Problem. Power quality is important issue of financial consequences for utilities, their consumers and load apparatus vendors. Voltage sag/swell are the most significant and usually occurring power quality issues in a secondary distribution system for sensitive loads. Goal. Dynamic voltage restorer is a fast, flexible, effective and dynamic custom power device can be used to compensate voltage sag/swell with integration of energy storage. Ultra capacitors have ideal properties of great power density and low energy density for elimination of voltage sag/swell. Their performance is mostly determined by the control strategy established for switching of voltage source converters. Originality. In this research, a strategy for the voltage source converter of dynamic voltage restorer based on the real twisting sliding mode control and ultra capacitor is developed to correct the fault that successfully eliminates the impacts of voltage sag/swell. Methodology. Ultra capacitor along with real twisting sliding mode control gives the more robustness and faster response, with also increasing the compensation time of the dynamic voltage restorer. Testing environment. To evaluate the performance of the proposed control approach, the MATLAB / Simulink SimPower System tool box is employed. Practical values. According to Simulation results clearly shows that the ultra capacitor along with real twisting sliding mode control effectively eliminate the voltage sag/swell in a very short time of 2 ms as compared to IEEE standards that is 20 ms, with less than 5 % total harmonic distortion for sensitive loads as per Information Technology Industry Council Curve and SEMI-F-47 Standards.

Publisher

National Technical University Kharkiv Polytechnic Institute

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3