Author:
Nerandzic Michelle M,Cadnum Jennifer L,Pultz Michael J,Donskey Curtis J
Abstract
Abstract
Background
Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe, rapid, and automated.
Methods
The Tru-D™ Rapid Room Disinfection device is a mobile, fully-automated room decontamination technology that utilizes ultraviolet-C irradiation to kill pathogens. We examined the efficacy of environmental disinfection using the Tru-D device in the laboratory and in rooms of hospitalized patients. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly touched surfaces before and after use of Tru-D.
Results
On inoculated surfaces, application of Tru-D at a reflected dose of 22,000 μWs/cm2 for ~45 minutes consistently reduced recovery of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2 and of VRE by >3-4 log10 CFU/cm2. Similar killing of MRSA and VRE was achieved in ~20 minutes at a reflected dose of 12,000 μWs/cm2, but killing of C. difficile spores was reduced. Disinfection of hospital rooms with Tru-D reduced the frequency of positive MRSA and VRE cultures by 93% and of C. difficile cultures by 80%. After routine hospital cleaning of the rooms of MRSA carriers, 18% of sites under the edges of bedside tables (i.e., a frequently touched site not easily amenable to manual application of disinfectant) were contaminated with MRSA, versus 0% after Tru-D (P < 0.001). The system required <5 minutes to set up and did not require continuous monitoring.
Conclusions
The Tru-D Rapid Room Disinfection device is a novel, automated, and efficient environmental disinfection technology that significantly reduces C. difficile, VRE and MRSA contamination on commonly touched hospital surfaces.
Publisher
Springer Science and Business Media LLC
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献