Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms

Author:

Nerandzic Michelle M,Cadnum Jennifer L,Pultz Michael J,Donskey Curtis J

Abstract

Abstract Background Environmental surfaces play an important role in transmission of healthcare-associated pathogens. There is a need for new disinfection methods that are effective against Clostridium difficile spores, but also safe, rapid, and automated. Methods The Tru-D™ Rapid Room Disinfection device is a mobile, fully-automated room decontamination technology that utilizes ultraviolet-C irradiation to kill pathogens. We examined the efficacy of environmental disinfection using the Tru-D device in the laboratory and in rooms of hospitalized patients. Cultures for C. difficile, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) were collected from commonly touched surfaces before and after use of Tru-D. Results On inoculated surfaces, application of Tru-D at a reflected dose of 22,000 μWs/cm2 for ~45 minutes consistently reduced recovery of C. difficile spores and MRSA by >2-3 log10 colony forming units (CFU)/cm2 and of VRE by >3-4 log10 CFU/cm2. Similar killing of MRSA and VRE was achieved in ~20 minutes at a reflected dose of 12,000 μWs/cm2, but killing of C. difficile spores was reduced. Disinfection of hospital rooms with Tru-D reduced the frequency of positive MRSA and VRE cultures by 93% and of C. difficile cultures by 80%. After routine hospital cleaning of the rooms of MRSA carriers, 18% of sites under the edges of bedside tables (i.e., a frequently touched site not easily amenable to manual application of disinfectant) were contaminated with MRSA, versus 0% after Tru-D (P < 0.001). The system required <5 minutes to set up and did not require continuous monitoring. Conclusions The Tru-D Rapid Room Disinfection device is a novel, automated, and efficient environmental disinfection technology that significantly reduces C. difficile, VRE and MRSA contamination on commonly touched hospital surfaces.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3