Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen

Author:

Brauer Rena,Beck Inken M,Roderfeld Martin,Roeb Elke,Sedlacek Radislav

Abstract

Abstract Background Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of extracellular matrix (ECM) in order to allow endothelial cells to migrate and invade into the surrounding tissue. Matrix metalloproteinases (MMPs) are considered to play a central role in the remodeling of basement membranes and ECM. However, MMPs contribute to vascular remodeling not only by degrading ECM components. Specific MMPs enhance angiogenesis via several ways; they help pericytes to detach from vessels undergoing angiogenesis, release ECM-bound angiogenic growth factors, expose cryptic pro-angiogenic integrin binding sites in the ECM, generate promigratory ECM component fragments, and cleave endothelial cell-cell adhesions. MMPs can also negatively influence the angiogenic process through generating endogenous angiogenesis inhibitors by proteolytic cleavage. Angiostatin, a proteolytic fragment of plasminogen, is one of the most potent antagonists of angiogenesis that inhibits migration and proliferation of endothelial cells. Reports have shown that metalloelastase, pancreas elastase, plasmin reductase, and plasmin convert plasminogen to angiostatin. Results We report here that MMP-19 processes human plasminogen in a characteristic cleavage pattern to generate three angiostatin-like fragments with a molecular weight of 35, 38, and 42 kDa. These fragments released by MMP-19 significantly inhibited the proliferation of HMEC cells by 27% (p = 0.01) and reduced formation of capillary-like structures by 45% (p = 0.05) compared with control cells. As it is known that angiostatin blocks hepatocyte growth factor (HGF)-induced pro-angiogenic signaling in endothelial cells due to structural similarities to HGF, we have analyzed if the plasminogen fragments generated by MMP-19 interfere with this pathway. As it involves the activation of c-met, the receptor of HGF, we could show that MMP-19-dependent processing of plasminogen decreases the phosphorylation of c-met. Conclusion Altogether, MMP-19 exhibits an anti-angiogenic effect on endothelial cells via generation of angiostatin-like fragments.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3