Potential therapeutic targets for pelvic organ prolapse: insights from key genes related to blood vessel development

Author:

Wu Huaye,Yang Lu,Yuan Jiakun,Zhang Ling,Tao Qin,Yin Litong,Yu Xia,Lin Yonghong

Abstract

ObjectivePelvic organ prolapse (POP) is a disease in which pelvic floor support structures are dysfunctional due to disruption of the extracellular matrix (ECM). The vascular system is essential for maintaining ECM homeostasis. Therefore, this study explored the potential mechanism of blood vessel development-related genes (BVDRGs) in POP.MethodsPOP-related datasets and BVDRGs were included in this study. Differentially expressed genes (DEGs) between the POP and control groups were first identified in the GSE12852 and GSE208271 datasets, and DE-BVDRGs were identified by determining the intersection of these DEGs and BVDRGs. Subsequently, the feature genes were evaluated by machine learning. Feature genes with consistent expression trends in the GSE12852 and GSE208271 datasets were considered key genes. Afterward, the overall diagnostic efficacy of key genes in POP was evaluated through receiver operating characteristic (ROC) curve analysis. Based on the key genes, enrichment analysis, immune infiltration analysis and regulatory network construction were performed to elucidate the molecular mechanisms underlying the functions of the key genes in POP.ResultsA total of 888 DEGs1 and 643 DEGs2 were identified in the GSE12852 and GSE208271 datasets, and 26 candidate genes and 4 DE-BVDRGs were identified. Furthermore, Hyaluronan synthase 2 (HAS2), Matrix metalloproteinase 19 (MMP19) and Plexin Domain Containing 1 (PLXDC1) were identified as key genes in POP and had promising value for diagnosing POP (AUC > 0.8). Additional research revealed that the key genes were predominantly implicated in immune cell activation, chemotaxis, and cytokine release via the chemokine signaling pathway, the Nod-like receptor signaling pathway, and the Toll-like receptor signaling pathway. Analysis of immune cell infiltration confirmed a decrease in the proportion of plasma cells in POP, and MMP19 expression showed a significant negative correlation with plasma cell numbers. In addition, regulatory network analysis revealed that MALAT1 (a lncRNA) targeted hsa-miR-503-5p, hsa-miR-23a-3p and hsa-miR-129-5p to simultaneously regulate three key genes.ConclusionWe identified three key BVDRGs (HAS2, MMP19 and PLXDC1) related to the ECM in POP, providing markers for diagnostic studies and investigations of the molecular mechanism of POP.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3