Abstract
Abstract
Background
Glioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer.
Results
We use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma.
Conclusions
Given the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients.
Funder
National Science Foundation
Texas A and M Engineering Experiment Station, Texas A and M University
CPRIT
University of Texas Medical School at Houston
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献