Hit discovery of novel 2‐phenyl‐substituted 4‐amino–6,7‐dihydro‐5H‐cyclopenta[d]pyrimidines as potential anti‐glioblastoma therapeutics: Design, synthesis, biological evaluation, and computational screening

Author:

Khairnar Sanjay12,Sonawane Anjali3,Cheke Rameshwar S.3ORCID,Kharkar Prashant S.3ORCID,Gaikwad Vishwas2,Patil Sambhaji2,Aware Valmik1

Affiliation:

1. Department of Chemistry SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College Chandwad India

2. Department of Chemistry Organic Chemistry Research Centre, K. R. T. Arts, B. H. Commerce and A. M. Science College Nashik India

3. Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai India

Abstract

AbstractGlioblastoma multiforme (GBM) is a highly‐aggressive, dreadful disease with poor prognosis and disappointing clinical success. There is an unmet medical need of molecularly‐targeted therapeutics for GBM treatment. In the present work, a series of novel 2‐phenyl‐substituted 4‐amino–6,7‐dihydro‐5H‐cyclopenta[d]pyrimidines was designed, synthesized, purified, characterized, and evaluated for cytotoxicity against glioblastoma cell line U87‐MG. The design process (virtual library enumeration around the core, physicochemical and molecular property prediction/calculation of the designs, filtering the undesirable ones, and the diversity analyses of the lead‐like designs), was carefully curated so as to obtain a set of structurally‐diverse, novel molecules (total 20), with a particular focus on the relatively unexplored core structure, 6,7‐dihydro‐5H‐cyclopenta[d]pyrimidine. The preliminary screening was done using MTT assay at 10 and 100 μM concentrations of the title compounds F1F20 and positive c120cisplatin, which yielded six hits (% inhibition at 10 μM: ~50%)—F2, F3, F5, F7, F15, and F20, which were taken up for IC50 determination. The top hits F2 and F7 (IC50 < 10 μM) were further used for computational studies such as target prediction, followed by their molecular docking in the binding sites of the top‐3 predicted targets (epidermal growth factor receptor kinase domain, cyclin‐dependent kinase 2 [CDK2]) /cyclin E, and anaplastic lymphoma kinase [ALK]). The docking pose analyses revealed interesting trends. The relatively planar core structure, presence of favorable hinge‐binding substructures, basic groups, all added up, and culminated in appreciable cytotoxicity against GBM cell line.

Publisher

Wiley

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3