Author:
Alf Malte F,Martić-Kehl Marianne I,Schibli Roger,Krämer Stefanie D
Abstract
Abstract
Background
Kinetic modeling of brain glucose metabolism in small rodents from positron emission tomography (PET) data using 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) has been highly inconsistent, due to different modeling parameter settings and underestimation of the impact of methodological flaws in experimentation. This article aims to contribute toward improved experimental standards. As solutions for arterial input function (IF) acquisition of satisfactory quality are becoming available for small rodents, reliable two-tissue compartment modeling and the determination of transport and phosphorylation rate constants of FDG in rodent brain are within reach.
Methods
Data from mouse brain FDG PET with IFs determined with a coincidence counter on an arterio-venous shunt were analyzed with the two-tissue compartment model. We assessed the influence of several factors on the modeling results: the value for the fractional blood volume in tissue, precision of timing and calibration, smoothing of data, correction for blood cell uptake of FDG, and protocol for FDG administration. Kinetic modeling with experimental and simulated data was performed under systematic variation of these parameters.
Results
Blood volume fitting was unreliable and affected the estimation of rate constants. Even small sample timing errors of a few seconds lead to significant deviations of the fit parameters. Data smoothing did not increase model fit precision. Accurate correction for the kinetics of blood cell uptake of FDG rather than constant scaling of the blood time-activity curve is mandatory for kinetic modeling. FDG infusion over 4 to 5 min instead of bolus injection revealed well-defined experimental input functions and allowed for longer blood sampling intervals at similar fit precisions in simulations.
Conclusions
FDG infusion over a few minutes instead of bolus injection allows for longer blood sampling intervals in kinetic modeling with the two-tissue compartment model at a similar precision of fit parameters. The fractional blood volume in the tissue of interest should be entered as a fixed value and kinetics of blood cell uptake of FDG should be included in the model. Data smoothing does not improve the results, and timing errors should be avoided by precise temporal matching of blood and tissue time-activity curves and by replacing manual with automated blood sampling.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference21 articles.
1. Martic-Kehl MI, Ametamey SM, Alf MF, Schubiger PA, Honer M: Impact of inherent variability and experimental parameters on the reliability of small animal PET data. EJNMMI Res 2012, 2: 26. 10.1186/2191-219X-2-26
2. Keyes JW Jr: SUV: standard uptake or silly useless value? J Nucl Med 1995, 36: 1836–1839.
3. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M: The [14C]Deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977, 28: 897–916. 10.1111/j.1471-4159.1977.tb10649.x
4. Brooks RA: Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 1982, 23: 538–539.
5. Krohn KA, Muzi M, Spence AM: What is in a number? The FDG lumped constant in the rat brain. J Nucl Med 2007, 48: 5–7.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献