Author:
Huisman Marc C,van Golen Larissa W,Hoetjes Nikie J,Greuter Henri N,Schober Patrick,Ijzerman Richard G,Diamant Michaela,Lammertsma Adriaan A
Abstract
Abstract
Background
Positron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [15O]H2O) and cerebral metabolic rate of glucose utilization (CMRglu; based on [18 F]-2-fluoro-2-deoxy-d-glucose ([18 F]FDG)). By using kinetic modeling, quantitative CBF and CMRglu values can be obtained. However, hardware limitations led to the development of semiquantitive calculation schemes which are still widely used. In this paper, the analysis of CMRglu and CBF scans, acquired on a current state-of-the-art PET brain scanner, is presented. In particular, the correspondence between nonlinear as well as linearized methods for the determination of CBF and CMRglu is investigated. As a further step towards widespread clinical applicability, the use of an image-derived input function (IDIF) is investigated.
Methods
Thirteen healthy male volunteers were included in this study. Each subject had one scanning session in the fasting state, consisting of a dynamic [15O]H2O scan and a dynamic [18 F]FDG PET scan, acquired at a high-resolution research tomograph. Time-activity curves (TACs) were generated for automatically delineated and for manually drawn gray matter (GM) and white matter regions. Input functions were derived using on-line arterial blood sampling (blood sampler derived input function (BSIF)). Additionally, the possibility of using carotid artery IDIFs was investigated. Data were analyzed using nonlinear regression (NLR) of regional TACs and parametric methods.
Results
After quality control, 9 CMRglu and 11 CBF scans were available for analysis. Average GM CMRglu values were 0.33 ± 0.04 μmol/cm3 per minute, and average CBF values were 0.43 ± 0.09 mL/cm3 per minute. Good correlation between NLR and parametric CMRglu measurements was obtained as well as between NLR and parametric CBF values. For CMRglu Patlak linearization, BSIF and IDIF derived results were similar. The use of an IDIF, however, did not provide reliable CBF estimates.
Conclusion
Nonlinear regression analysis, allowing for the derivation of regional CBF and CMRglu values, can be applied to data acquired with high-spatial resolution current state-of-the-art PET brain scanners. Linearized models, applied to the voxel level, resulted in comparable values. CMRglu measurements do not require invasive arterial sampling to define the input function.
Trial registration
ClinicalTrials.gov NCT00626080
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference36 articles.
1. Lammertsma AA, Brooks DJ, Frackowiak RS, Beaney RP, Herold S, Heather JD, Palmer AJ, Jones T: Measurement of glucose utilization with [18 F]2-fluoro-2-deoxy-D-glucose: a comparison of different analytical methods. J Cereb Blood Flow Metab 1987, 7: 161–172. 10.1038/jcbfm.1987.39
2. Schmidt KC, Lucignani G, Sokoloff L: Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilization: a re-examination. J Nucl Med 1996, 37: 394–399.
3. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE: Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980, 238: E69-E82.
4. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979, 6: 371–388. 10.1002/ana.410060502
5. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L: The [18 F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979, 44: 127–137. 10.1161/01.RES.44.1.127
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献