Simultaneous estimation of a model-derived input function for quantifying cerebral glucose metabolism with [18F]FDG PET

Author:

Narciso Lucas,Deller Graham,Dassanayake Praveen,Liu Linshan,Pinto Samara,Anazodo Udunna,Soddu Andrea,Lawrence Keith St

Abstract

Abstract Background Quantification of the cerebral metabolic rate of glucose (CMRGlu) by dynamic [18F]FDG PET requires invasive arterial sampling. Alternatives to using an arterial input function (AIF) include the simultaneous estimation (SIME) approach, which models the image-derived input function (IDIF) by a series of exponentials with coefficients obtained by fitting time activity curves (TACs) from multiple volumes-of-interest. A limitation of SIME is the assumption that the input function can be modelled accurately by a series of exponentials. Alternatively, we propose a SIME approach based on the two-tissue compartment model to extract a high signal-to-noise ratio (SNR) model-derived input function (MDIF) from the whole-brain TAC. The purpose of this study is to present the MDIF approach and its implementation in the analysis of animal and human data. Methods Simulations were performed to assess the accuracy of the MDIF approach. Animal experiments were conducted to compare derived MDIFs to measured AIFs (n = 5). Using dynamic [18F]FDG PET data from neurologically healthy volunteers (n = 18), the MDIF method was compared to the original SIME-IDIF. Lastly, the feasibility of extracting parametric images was investigated by implementing a variational Bayesian parameter estimation approach. Results Simulations demonstrated that the MDIF can be accurately extracted from a whole-brain TAC. Good agreement between MDIFs and measured AIFs was found in the animal experiments. Similarly, the MDIF-to-IDIF area-under-the-curve ratio from the human data was 1.02 ± 0.08, resulting in good agreement in grey matter CMRGlu: 24.5 ± 3.6 and 23.9 ± 3.2 mL/100 g/min for MDIF and IDIF, respectively. The MDIF method proved superior in characterizing the first pass of [18F]FDG. Groupwise parametric images obtained with the MDIF showed the expected spatial patterns. Conclusions A model-driven SIME method was proposed to derive high SNR input functions. Its potential was demonstrated by the good agreement between MDIFs and AIFs in animal experiments. In addition, CMRGlu estimates obtained in the human study agreed to literature values. The MDIF approach requires fewer fitting parameters than the original SIME method and has the advantage that it can model the shape of any input function. In turn, the high SNR of the MDIFs has the potential to facilitate the extraction of voxelwise parameters when combined with robust parameter estimation methods such as the variational Bayesian approach.

Funder

Canadian Institutes of Health Research

Alzheimer's Drug Discovery Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3