Presentations of tetramethylammonium hydroxide dermal exposure and the valuable potential of diphoterine solution in decontamination: a retrospective observational study

Author:

Huang Chih-Kang,Hall Alan H.,Wu Ming-Ling,Yang Chen-Chang,Hung Dong-Zong,Mao Yan-Chiao,Deng Jou-Fang

Abstract

Abstract Background Tetramethylammonium hydroxide (TMAH) is a quaternary ammonium compound that is both a base corrosive and a cholinergic agonist, and it is widely used in the photoelectric and semiconductor industries. It causes corrosive skin injuries and systemic cholinergic toxicity with death primarily resulting from respiratory failure without efficacious early decontamination. Methods A retrospective observational study was performed of all cases of TMAH exposure reported to the Taiwan Poison Control Center between July 2010 and October 2017. Retrieved medical records were independently reviewed by two trained clinical toxicologists. Results Despite immediate (< 5 min) skin decontamination with copious amounts of tap water, one patient exposed to 25% TMAH involving ≥5% of total body surface area (TBSA) developed significant systemic toxicity. Patients exposed to 25% TMAH involving ≤1% TBSA developed first-degree chemical skin injuries but no systemic toxicity. Among patients exposed to lower concentrations (≤2.38%) of TMAH, the majority only experienced first-degree chemical skin injuries without systemic signs. Patients exposed to 0.5% TMAH involving nearly their entire TBSA developed no chemical skin injuries or systemic toxicity. All patients who had only first-degree chemical skin injuries did not develop systemic toxicity after exposure to either 2.38% or 25% TMAH. Conclusions TMAH acts as an alkaline corrosive and cholinergic agonist. Systemic signs attributable to TMA+ can rapidly lead to respiratory failure and death after dermal exposure. We have demonstrated that an amphoteric solution may be efficacious for skin decontamination on-site immediately to prevent or ameliorate such toxicity. This practice especially carries a valuable potential in managing victims (patients) who have been exposed to those chemicals with immediate life-threatening toxicity (e.g. TMAH), suggesting that its early utilization deserves further study.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Pharmacology

Reference28 articles.

1. Ackermann D, Holtz F, Reinwein H. Reindarstellung und konstitutionsemitteelung der tetramins, eines giftes aus Aktina equina. Z Biol. 1923;78:113.

2. United States Environmental Protection Agency. http://www.epa.gov/cdr/tools/data/2002-vol.html, Accessed 07 Nov 2019.

3. United States Environmental Protection Agency. http://java.epa.gov/opptchemicalsearch/1, Accessed 07 Nov 2019.

4. Francesco Ferella VI, Zueva S, Corradini V, Ippolito NM, Birloaga IP, Michelis I, et al. Aerobic treatment ofWaste process solutions from the semiconductor industry: from lab to pilot scale. Sustainability. 2019;11(14):3923.

5. Wu CL, Su SB, Chen JL, Chang CP, Guo HR. Tetramethylammonium ion causes respiratory failure related mortality in a rat model. Resuscitation. 2012;83(1):119–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3