Author:
Collins Rachel A,Gualano Rosa C,Zosky Graeme R,Atkins Constance L,Turner Debra J,Colasurdo Giuseppe N,Sly Peter D
Abstract
Abstract
Background
To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.
Methods
BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.
Results
Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.
Conclusion
Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Glezen P, Denny FW: Epidemiology of acute lower respiratory disease in children.
N Engl J Med 1973, 288:498–505.
2. Glezen WP, Taber LH, Frank AL, Kasel JA: Risk of primary infection and reinfection with respiratory syncytial virus.
Am J Dis Child 1986, 140:543–546.
3. Openshaw PJ: Immunity and immunopathology to respiratory syncytial virus. The mouse model.
Am J Respir Crit Care Med 1995, 152:S59–62.
4. Harsten G, Prellner K, Lofgren B, Heldrup J, Kalm O, Kornfalt R: Serum antibodies against respiratory tract viruses: a prospective three-year follow-up from birth.
J Laryngol Otol 1989, 103:904–908.
5. Schmidt AC, Johnson TR, Openshaw PJM, Braciale TJ, Falsey AR, Anderson LJ, Wertz GW, Groothuis JR, Prince GA, Melero JA, Graham BS: Respiratory syncytial virus and other pneumoviruses: a review of the international symposium-RSV 2003.
Virus Res 2004, 106:1–13.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献