Author:
Totzeck Claudia,Pinnau René
Abstract
AbstractControl of stochastic interacting particle systems is a non-trivial task due to the high dimensionality of the problem and the lack of fast algorithms. Here, we propose a space mapping-based approximation of the stochastic control problem by solutions of the deterministic one. In combination with the receding horizon control technique this yields a reliable and fast numerical scheme for the closed loop control of stochastic interacting particle systems. As a numerical example we consider the herding of sheep with dogs. The numerical results underline the feasibility of our approach and further show stabilizing behaviour of the closed loop control.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Albi G, Balague D, Carrillo JA, von Brecht J. Stability analysis of flock and mill rings for second order models in swarming. J Appl Math. 2017;74:794–818.
2. Albi G, Pareschi L. Selective model-predictive control for flocking systems. Commun Appl Ind Math. 2018;9(2):4–21.
3. Albi G, Pareschi L. Modeling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics. Appl Math Lett. 2013.
4. Bakr MH, Bandler JW, Madsen K, Søndergaard J. Review of the space mapping approach to engineering optimization and modeling. Optim Eng. 2000;1:241–76.
5. Bandler JW, Biernacki RM, Chen SH, Grobelny PA, Hemmers RH. Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Tech. 1994;42(12).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献