Detecting self-organising patterns in crowd motion: effect of optimisation algorithms

Author:

Worku Samson,Mullick PratikORCID

Abstract

AbstractThe escalating process of urbanization has raised concerns about incidents arising from overcrowding, necessitating a deep understanding of large human crowd behavior and the development of effective crowd management strategies. This study employs computational methods to analyze real-world crowd behaviors, emphasizing self-organizing patterns. Notably, the intersection of two streams of individuals triggers the spontaneous emergence of striped patterns, validated through both simulations and live human experiments. Addressing a gap in computational methods for studying these patterns, previous research utilized the pattern-matching technique, employing the Nelder-Mead Simplex algorithm for fitting a two-dimensional sinusoidal function to pedestrian coordinates. This paper advances the pattern-matching procedure by introducing Simulated Annealing as the optimization algorithm and employing a two-dimensional square wave for data fitting. The amalgamation of Simulated Annealing and the square wave significantly enhances pattern fitting quality, validated through statistical hypothesis tests. The study concludes by outlining potential applications of this method across diverse scenarios.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3