Author:
Mndela Mthunzi,Madakadze Casper Ignacio,Nherera-Chokuda Florence,Dube Sikhalazo
Abstract
Abstract
Background
Bush clearing of encroached rangelands is crucial for restoration of herbaceous cover and diversity. Regeneration after bush clearing depends largely on the soil seed bank (SSB) size and composition. To assess the potential of the SSB to facilitate post-clearing herbaceous restoration, we examined the SSB density, composition and diversity and similarity between SSB and aboveground vegetation (AGV).
Methods
The study was conducted in semi-arid rangelands of Maseding and Kgomokgomo in North-West Province of South Africa. In each rangeland, all woody plants in three 1250 m2 plots were cut using saws and loppers, with the stumps treated with picloram. Paired observations were conducted in cleared and uncleared microsites. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) in each microsite in April (pre-treatment), August, October and December 2016 and in April and August 2017. SSB was assessed using seedling emergence method, whereas pre- and post-clearing surveys of AGV were conducted in February 2016 and 2017, respectively.
Results
Cleared microsites had significantly (p < 0.01) higher seed bank densities (1872 and 693 seeds m-2 at Maseding and Kgomokgomo, respectively) relative to uncleared microsites in August 2017, with grasses accounting for higher densities than other plant functional groups in the upper 0–10 cm. Pioneer grasses (Aristida congesta subsp. barbicollis, Brachiaria eruciformis and Tragus berteronianus) and invasive forbs (Bidens pilosa and Schkuhria pinnata) dominated the SSB in cleared microsites at Maseding, whereas succulents (Portulaca spp.) and pioneer grasses (T. berteronianus and Urochloa mosambicensis) were abundant at Kgomokgomo in August 2017. SSB and AGV were dissimilar until December 2016; thereafter, similarity increased significantly (p < 0.05) in cleared microsites (Sørensen’s coefficient = 0.60 to 0.66 at Maseding and 0.43 to 0.52 at Kgomokgomo) compared to uncleared microsites. Species diversity was highest in August 2016 and April 2017 at Maseding, but it did not differ between two microsites (p > 0.05). At Kgomokgomo, SSB was more diverse in cleared than uncleared microsites in April and August 2017.
Conclusion
High seed bank densities in the upper soil layer in cleared microsites would promote passive restoration, but regeneration is likely to be initiated by early successional species. However, close monitoring and eradication of invasive forbs and succulents is necessary following bush clearing. The tendency of SSB resembling AGV over time in cleared microsites signifies that seed production from AGV is important for passive restoration following bush clearing.
Funder
Agricultural Research Council
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modelling,Ecology
Reference55 articles.
1. Abella SR, Chiquoine LP, Vanier CH (2013) Characterizing soil seed banks and relationships to plant communities. Plant Ecol 214:703–715
2. Abella SR, Springer JD (2008) Estimating soil seed bank characteristics in ponderosa pine forests using vegetation and forest-floor data. United States Department of Agriculture Forest Service. Research Note RMRS-RN-35.
3. Archer SR, Predick KI (2014) An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J Ecol 102:1394–1407
4. Arevalo B, Valladarez-Cob JG, Muschamp S, Kay E, Finkral A, Roopsind A, Putz FE (2016) Effects of reduced-impact selective logging on palm regeneration in Belize. Forest Ecol Manage 369:155–160
5. Bakker JP, Bakker ES, Rosen E, Verweig GL, Bekker RM (1996) The soil seed bank composition along a gradient from dry alvar grassland to Juniperus scrubland. J Veg Sci 7:165–176
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献