Abstract
Abstract
Background
Planktonic bacteria and archaea play a key role in river nutrient biogeochemical cycling; however, their respective community assembly and how to maintain their diversity are not well known in dammed rivers. Therefore, a seasonal survey of planktonic bacterial and archaeal community compositions and related environmental factors was conducted in 16 cascade reservoirs and corresponding river waters on the Wujiang River and the Pearl River in southwest China to understand the above mechanisms.
Results
Deterministic processes dominated bacterial and archaeal community assembly. The structural equation models showed that water temperature can directly or indirectly affect the microbial diversity. Interestingly, planktonic bacterial diversity increased with increasing water temperature, while archaea showed the opposite trend; the overall diversity of bacteria and archaea was no significant changes with changeable water temperature. Abundant microbes had a stronger distance–decay relationship than middle and rare ones, and the relationship was stronger in winter and spring than in summer and autumn.
Conclusions
Planktonic bacteria and archaea in dammed rivers had different biogeographic distributions, and water temperature was a key controlling factor. The different responses of planktonic bacterial and archaeal diversity to water temperature could be due to their different phylogenetic diversity. This ultimately maintained the stability of total microbial community diversity. This study reveals the different responses of planktonic bacteria and archaea to water temperature and perfects the theoretical framework for planktonic microbial biogeography in dammed rivers.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Ecological Modeling,Ecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献