On two extensions of the canonical Feller–Spitzer distribution

Author:

Vinogradov Vladimir VladimirovichORCID,Paris Richard Bruce

Abstract

AbstractWe introduce two extensions of the canonical Feller–Spitzer distribution from the class of Bessel densities, which comprise two distinct stochastically decreasing one-parameter families of positive absolutely continuous infinitely divisible distributions with monotone densities, whose upper tails exhibit a power decay. The densities of the members of the first class are expressed in terms of the modified Bessel function of the first kind, whereas the members of the second class have the densities of their Lévy measure given by virtue of the same function. The Laplace transforms for both these families possess closed–form representations in terms of specific hypergeometric functions. We obtain the explicit expressions by virtue of the particular parameter value for the moments of the distributions considered and establish the monotonicity of the mean, variance, skewness and excess kurtosis within the families. We derive numerous properties of members of these classes by employing both new and previously known properties of the special functions involved and determine the variance function for the natural exponential family generated by a member of the second class.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Computer Science Applications,Statistics and Probability

Reference26 articles.

1. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Chapman & Hall, Dover (1965).

2. Apostol, T. M.: Mathematical Analysis: A Modern Approach to Advanced Calculus. Addison–Wesley, Reading MA (1957).

3. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996).

4. Cohn, H.: On the convergence of stochastically monotone sequences of random variables and some applications. J. Appl. Probab. 18, 592–605 (1981).

5. Embrechts, P., Goldie, C., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrsch. Verw. Gebiete. 49, 335–347 (1979).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3