Membranes for bioethanol production by pervaporation

Author:

Peng Ping,Lan YongqiangORCID,Liang Lun,Jia Kemeng

Abstract

Abstract Background Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. Results This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. Conclusions Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future. Graphical abstract

Funder

the Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education

the National Natural Science Foundation of China

the Education Scientific Research Project of Youth Teacher in the Education Department of Fujian Province

Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology

Reference270 articles.

1. International Energy Outlook 2016. https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf.

2. International Energy Outlook 2019. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf.

3. Nel WP, Cooper CJ. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy. 2009;37:166–80.

4. Parawira W. Biodiesel production from Jatropha curcas: A review. Sci Res Essays. 2010;5:1796–808.

5. Tafarte P, Das S, Eichhorn M, Thrän D. Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources. Energy. 2014;72:80–92.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3