Optimizing spiral‐wound pervaporation membrane modules through simulation: Unraveling the permeate spacer structure

Author:

Lu Xiaotian123,Huang Jiachen12,Pinelo Manuel4ORCID,Chen Guoqiang12,Wan Yinhua15,Luo Jianquan123ORCID

Affiliation:

1. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences Beijing China

2. Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences Beijing China

3. Sino‐Danish College, University of Chinese Academy of Sciences Beijing China

4. Process and Systems Engineering Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark Kgs Lyngby Denmark

5. Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou China

Abstract

AbstractFor low‐pressure pervaporation, the performance of spiral wound pervaporation membrane (SWM‐PV) module is significantly influenced by permeate spacer structure. This study addresses mass transport challenges in SWM‐PV modules, focusing on increased gas flow resistance and vacuum attenuation due to membrane envelope deformation in the permeate side channel. Employing fluid and structural simulation models to evaluate phase change and membrane deformation, we successfully optimized SWM‐PV module configurations for improved ethanol recovery. Our strategies included a mass transfer‐enhanced feed spacer to mitigate concentration polarization, a high‐strength permeate spacer to alleviate membrane deformation, and tailored membrane envelopes to balance packing density and mass transfer efficiency. These synergistic optimizations led to a 22.1% improvement in ethanol mass transfer coefficient and a 78.5% reduction in module's specific energy consumption. Our work reveals the importance of permeate spacer structure in optimizing SWM‐PV modules, offering clear guidance for the development of mass transfer‐enhanced SWM‐PV modules.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3