The metabolome and bacterial composition of high-moisture Italian ryegrass silage inoculated with lactic acid bacteria during ensiling

Author:

Xia Guang-hao,Wu Chang-rong,Zhang Ming-zhu,Yang Feng,Chen Chao,Hao Jun

Abstract

Abstract Background With its high nutritional value and productivity, Italian ryegrass as a biomass feedstock constantly supplies rumen degradable nitrogen and digestible fiber to ruminants. However, biofuel production is easily reduced during ensiling due to the high-moisture content of Italian ryegrass, leading to economic losses. Lactic acid bacteria inoculants could improve lignocellulosic degradation and fermentation quality and decrease dry matter loss during the bioprocessing of silage. Therefore, this study analyzed the effects of Lactobacillus buchneri TSy1-3 (HE), Lactobacillus rhamnosus BDy3-10 (HO), and the combination of HE and HO (M) on fermentation quality, bacterial community and metabolome in high-moisture Italian ryegrass silage during ensiling. Results The results showed that the pH value was significantly lower in the HO groups than in the other treatments at the end of ensiling, and the dry matter and acetic acid contents were significantly higher in the HO group than in the other inoculated groups. All inoculants decreased the diversity of the bacterial community and significantly increased the relative abundance of Lactobacillus. Inoculation with HO significantly improved the concentrations of organic acids, dipeptides, ferulic acid, apigenin, and laricitrin. Compared with Lactobacillus buchneri TSy1-3 (HE), HO significantly upregulated the flavonoid compounds in the flavone and flavonol biosynthesis pathway. Conclusions Overall, these findings suggest that inoculation with HO was beneficial for the development of Italian ryegrass as a biomass feedstock, improving fermentation quality, accelerating changes in bacterial community composition and increasing biofunctional metabolites in high-moisture Italian ryegrass silage.

Funder

Scientific Research Cultivation Project of Guizhou University

Major Special Project of Science and Technology of Guizhou Province

Science and Technology Support project of Guizhou Province

Guizhou Talent Base of Grassland Ecological Animal Husbandry

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3