Exploring the Fermentation Products, Microbiology Communities, and Metabolites of Big-Bale Alfalfa Silage Prepared with/without Molasses and Lactobacillus rhamnosus

Author:

Wu Baiyila1,Ren Tong1,Li Changqing2,Wu Songyan3,Cao Xue1,Mei Hua1,Wu Tiemei1,Yong Mei1,Wei Manlin1ORCID,Wang Chao2

Affiliation:

1. College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China

2. Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010031, China

3. Naiman Banner Animal Disease Prevention and Control Center, Tongliao 028000, China

Abstract

The influence of molasses (M) and Lactobacillus rhamnosus (LR) on fermentation products, microbial communities, and metabolites in big-bale alfalfa silage was investigated. Alfalfa (Medicago sativa L.) was harvested at the third growth stage during the flowering stage in the experimental field of Linhui Grass Company from Tongliao City, Inner Mongolia. An alfalfa sample without additives was used as a control (C). M (20 g/kg) and LR (106 cfu/g) were added either alone or in combination. Alfalfa was fermented for 7, 14, and 56 d. Lactic acid content in the M, LR, and MLR groups increased, whereas the pH value and butyric acid, 2,3-butanediol, and ethanol contents decreased compared to those of C group after 7, 14, and 56 d of fermentation. A two-way analysis of variance (ANOVA) was performed to estimate the results. The LR group exhibited increased Lactobacillus abundance, whereas the M and MLR groups showed increased Weissella abundance compared to the C group. The relative contents of amino acids (tyrosine, isoleucine, threonine, arginine, valine, and citrulline) in the M and MLR groups were higher than those in the C group. During fermentation, the M, LR, and MLR groups showed decreased phenylalanine, isoleucine, and ferulic acid contents. Amino acids such as isoleucine and L-aspartic acid were positively correlated with Lactobacillus but negatively correlated with Weissella. In conclusion, combining high-throughput sequencing and liquid chromatography–mass spectrometry during anaerobic alfalfa fermentation can reveal new microbial community compositions and metabolite profiles, supporting the application of M, LR, and MLR as feed fermentation agents.

Funder

the China Agriculture Research System

the Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3